Investigation on the impact of elevated temperature on sustainable geopolymer composite

Author:

Verma Manvendra1,Meena Rahul Kumar2,Singh Indrajeet3,Gupta Nakul1ORCID,Saxena Kuldeep K4ORCID,Reddy M Madhusudhan5,Salem Karrar Hazim6,Salmaan Ummal7

Affiliation:

1. Department of Civil Engineering, GLA University, Mathura, Uttar Pradesh, India

2. Department of Civil Engineering, Punjab Engineering College, Chandigarh, Punjab, India

3. Department of Civil Engineering, Delhi Technological University, Delhi, India

4. Division of Research and Development, Lovely Professional University, Phagwara, Jalandhar, Punjab, India

5. Department of Civil Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana, India

6. Al-Mustaqbal University College, Hillah, Babil, Iraq

7. Department of Automotive Engineering, Aksum University, Aksum, Tigray, Ethiopia

Abstract

Geopolymer concrete (GPC) is an eco-friendly, sustainable, cementless and green concrete. It could be an alternative to the conventional concrete. In alkaline circumstances, the alumina and silica concentration in geopolymer concrete creates the geopolymer bond, while regular concrete creates C-S-H (calcium silicate hydrate bond). The final result of the geopolymer bond does not include any water. At elevated temperatures, geopolymer concrete would thus be more stable. Due to its greater strength and durability quality, geopolymer concrete may be the ideal replacement for ordinary portland cement (OPC) concrete. This research intends to examine how specimens of geopolymer concrete and regular concrete respond to exposure to increased temperatures between 100°C and 800°C. Mass loss, ultrasonic pulse velocity, compressive strength, X-ray diffraction, thermogravimetric analysis and derivative thermogravimetric analysis were all examined throughout the experimental examination. Both concrete specimens lose mass or weight as the exposure temperature rises; OPC concrete samples spalls at 600°C, while GPC sample fail at 800°C. GPC specimens lose around 12% of their original mass after being exposed to temperatures of 800°C, while OPC specimens lose about 7%. The GPC specimens maintained 60% of their initial compressive strength after being exposed to a temperature of 700°C, but the OPC concrete specimens only kept 52%. With each increase in exposure to extreme temperatures, the peaks of quartz and cristobalite are lowered. Only the form or structure of the mineral oxide would change; the chemical linkages would remain. The GPC samples subjected to temperatures of 100°C exhibit effective thermal stability than all other specimens exposed to extreme temperatures. As the exposure temperature rises, the GPC specimens become more thermally stable. According to the experimental findings, the GPC specimens’ bonding structure makes them more resistant to high temperatures than regular concrete specimens. Micropores are present in the voids of the geopolymer matrix, while mesopores and micropores are present in the voids of the OPC matrix. While OPC bonding is C-S-H formed by the hydration of lime and silica contained in the cement, the geopolymer bonding did not include the water content in the final or end result of geopolymerisation for strengthening.

Funder

Civil Engineering Department

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3