A magnetic field-circuit coupling model for functionality and interface simulation test of railway Balise

Author:

Li Zhengjiao1ORCID,Zhao Zishuo1,Liu Jiang12,Cai Baigen123,Lu Debiao12

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China

2. Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University, Beijing, China

3. School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

Abstract

Railway Balise is widely used in the Balise-based train control system to provide accurate location information for the safe operation of trains. In order to evaluate and analyze the functionality and interface test of a new designed Balise more rigorously and accurately, this paper build a magnetic field-circuit coupling model to quantify the internal physical function and external interface performance of the Balise. Based on the electromagnetic field theory, the down-link and up-link magnetic field models were set up which describes the relationship between the Balise and the test antenna. Then based on the equivalent circuit model, the energy conversion circuit model and the data transmission circuit model were derived, and the complete coupling model is established for functionality and interface simulation tests. Moreover, the physical behavior and interface characteristic of Balise in different situations are validated and analyzed, followed by the analysis of magnetic field conformity, I/O characteristics, impedance, start-up behavior, and up-link signal characteristics. The results show the start-up time of the Balise functionality test decreases with increasing down-link magnetic field. Furthermore, Balise impedance can be used as a new dynamic detection parameter of the Balise. Finally, the down-link magnetic field will slightly affect the uplink signal characteristics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3