Research on axial nonlinear vibration characteristics of ball screw feed system considering segmented restoring force

Author:

Wu Qin12,Luo Dianli1ORCID,Wang Xinglian3

Affiliation:

1. College of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, China

2. CEPE, Centre for Mechanical Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, UK

3. Electromechanical Instrument Operation and Maintenance Center, Lanzhou Petrochemical Company of CNPC, Lanzhou, China

Abstract

Taking the ball screw feed system as the research object, the two degree of freedom axial dynamic model of the system is constructed firstly. Based on Hertz contact theory, when the ball screw pair adopts variable lead self-preloading to eliminate the assembly clearance between the ball and raceway, considering the nonlinear segmented axial elastic recovery force generated by the uneven contact deformation between the ball and raceway under the action of external excitation force, further derive the nonlinear dynamic equation group of the system. Next, the fourth-order Runge-Kutta method was used to numerically solve the equation system, obtaining the system’s two and three-dimensional phase diagrams, Poincaré sections, time-domain waveform diagrams, frequency spectra, and bifurcation diagrams. Then, the effects of damping constant, initial contact angle between ball and raceway in ball screw pairs, and number of balls on the system’s response characteristics were analyzed, and the influence of external excitation forces on system stability was further studied. Finally, it was verified through experiments that the axial vibration of the system is indeed nonlinear vibration, providing a theoretical basis for the study of the dynamic characteristics of the ball screw feed system.

Funder

National Natural Science Fund of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3