Modified Block Homotopy Perturbation Method for solving triangular linear Diophantine fuzzy system of equations

Author:

Shams Mudassir1ORCID,Kausar Nasreen2ORCID,Khan Naveed1,Shah Mohd Asif3ORCID

Affiliation:

1. Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan

2. Deperament of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey

3. Department of Economics, College of Business and Economics, Kebri Dehar University, Kebri Dahar, Ethiopia

Abstract

Numerous real-world applications can be solved using the broadly adopted notions of intuitionistic fuzzy sets, Pythagorean fuzzy sets, and q-rung orthopair fuzzy sets. These theories, however, have their own restrictions in terms of membership and non-membership levels. Because it utilizes benchmark or control parameters relating to membership and non-membership levels, this theory is particularly valuable for modeling uncertainty in real-world problems. We propose the unique concept of linear Diophantine fuzzy set with benchmark parameters to overcome these restrictions. Different numerical, analytical, and semi-analytical techniques are used to solve linear systems of equations with several fuzzy numbers, such as intuitionistic fuzzy number, triangular fuzzy number, bipolar fuzzy number, trapezoidal fuzzy number, and hexagon fuzzy number. The purpose of this research is to solve a fuzzy linear system of equations with the most generalized fuzzy number, such as Triangular linear Diophantine fuzzy number, using an analytical technique called Homotopy Perturbation Method. The linear systems co-efficient are crisp when the right hand side vector is a triangular linear Diophantine fuzzy number. A numerical test examples demonstrates how our newly improved analytical technique surpasses other existing methods in terms of accuracy and CPU time. The triangular linear Diophantine fuzzy systems of equations’ strong and weak visual representations are explored.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3