Modeling and simulation of the equivalent vertical stiffness of leaf spring suspensions

Author:

Zhang Junhong1,Long Feiqi1ORCID,Lin Jiewei1,Zhu Xiaolong1,Dai Huwei1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, People’s Republic of China

Abstract

In vehicle multi-body dynamics (MBD) modeling, the stiffness parameterization of leaf spring (LS) is an unavoidable challenge regardless of the selection of modeling methods. On the contrary, the parameterization of Coil Spring (CS) stiffness is easy to achieve by adjusting the scale factor. Therefore, a novel LS stiffness parameterization method by treating the suspension stiffness as an intermediate variable through a CS stiffness is proposed based on the virtual displacement theory. The proposed method is then implemented in the vehicle-level modeling of a commercial Van with front transverse leaf spring suspensions and rear longitudinal parabolic leaf spring suspensions. The MBD model is validated by natural frequency tests and suspension stiffness simulations. Furthermore, the vertical acceleration of the car body is also verified. Results show that the root mean square (RMS) values of body vertical acceleration in the equivalent CS model are just slightly lower than that in the LS suspensions. The applicability and capability of the proposed method are proven to address the limitation of LS stiffness parameterization in MBD modeling. It lays the groundwork for efficiently simulating the LS suspension in vehicle ride and handling design and optimization.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Tianjin City

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3