Joint modeling and dynamic analysis of the microenvironment and life support performance of extravehicular spacesuits

Author:

Sun Yuehang1,Li Yun-Ze1ORCID,Yuan Man1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing, PR China

Abstract

The ability to maintain the microenvironment and life-support systems of an extravehicular spacesuit is an important factor in determining the duration of extravehicular activity (EVA). This paper introduces a joint human-spacesuit microenvironment dynamic model. The paper presents novel simplified human body models and analyzes expendable substances. These models can reasonably predict spacesuit safety performance, correctly respond to changes in loads, and aid in the optimization of the intensity of EVAs. According to the simulations, an 8-h EVA consumes approximately 1 kg of LiOH and 2.7 kg of water under the designed working conditions. Liquid cooling systems are the primary thermal management devices in microenvironments. Activity intensity and liquid cooling system flow rate are two important factors that influence the spacesuit microenvironment and life support material consumption. Activity intensity has a significant impact on LiOH consumption, with a threefold increase in metabolic heat increases LiOH consumption by about 2.5 times. Activity intensity plays an important role in the life-support performance of a spacesuit, and proper scheduling is critical to the efficiency and safety of EVAs. The material consumption model can estimate material consumption during the mission scheduling phase, resulting in efficient and dependable operation of the life support system.

Funder

Academic Excellence Foundation of BUAA for PHD Students

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3