Effect of laminate parameters on nonlinear dynamic characteristic of the composite rotor-bearing system with pedestal looseness

Author:

Yang Mo12ORCID,Xuan Hao1,Qin Tao1,Wang Yikun1,Zhou Yuebin1ORCID,Zhang Wen1

Affiliation:

1. Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang, China

2. Xiangyang Key Laboratory of Rehabilitation Medicine and Engineering Technology, Xiangyang, China

Abstract

The nonlinear dynamics of the composite shaft rotor-bearing system are greatly affected by the orientation angle layer and its proportion of the ply, i.e., the ratio of the orientation angle layer in the laminate. This paper presents a nonlinear dynamic analysis of a composite rotor-bearing system with pedestal looseness that considers the nonlinear oil film force and the pedestal looseness. Nonlinear phenomena including periodic, quasi-periodic, and chaotic motions are analyzed. The analysis results indicate that the stiffness and damping coefficients of a composite shaft tube can be influenced strongly by the laminate parameters, which can in turn affect the instability speed of the rotor system. To enhance the oil film instability speed of the composite rotor system, it is essential to maximize the ratio of the small orientation angle layer or the ±45° layer. Additionally, increasing the ratio of the small orientation angle layers in the shaft tube leads to a higher rotational speed for loosening instability. The research results obtained in this paper have important theoretical value for the design of composite rotor-bearing systems.

Funder

Science and Technology Research Project of Hubei Provincial Department of Education

National Natural Science Foundation of China

Xiangyang Science and Technology Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3