Numerical study on the efficiency of an electrostatic precipitator having the shape of a truncated cone

Author:

Nejma Chahine1,Ben Abdelmlek Khaoula2ORCID,Ben Nejma Fayçal2

Affiliation:

1. Preparatory Institute for Scientific and Technical Studies of Tunis, La Marsa, Tunisia

2. Laboratory of Studies of Ionized and Reactive Media, Monastir, Tunisia

Abstract

This paper presents a comprehensive numerical study of a truncated conical precipitator. The main objective was to enhance the efficiency of the precipitator by exploring the influence of several parameters on particle trajectories and the evolution of the collection efficiency. The studied parameters include the cone coefficient ( D), flow velocity, applied voltage, conduit diameter and length, as well as relative permeability. For each parameter, analyses were conducted on the evolution of the collection efficiency for particles with various diameters, ranging from 0.01 to 10 μm. The results obtained from the numerical simulation on COMSOL Multiphysics® indicate that, regardless of the value of D, the precipitator exhibits optimal efficiency in collecting particles with extreme diameters (0.01 and 10 μm) due to the dominance of the electrical force. In contrast, particles with intermediate diameters (0.1–1 μm) present a challenge, as the drag and electric forces are too weak to ensure effective particle collection. The study highlights that a sharper tip at the top of the precipitator significantly enhances its efficiency. Increasing the applied voltage and selecting lower inner radii of the collecting electrode reinforce the electrical force and enhance particle collection. Furthermore, increasing the height of the precipitator directs particle trajectories more effectively toward the collecting electrode. The results provide valuable insights for the design of more efficient precipitators and propose practical guidelines for improving their effectiveness. These contributions are particularly important for air pollution control technologies, offering significant advancements in this field.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3