Artificial neural network–aided technique for low voltage ride-through wind turbines for controlling the dynamic behavior under different load conditions
Author:
Affiliation:
1. Department of Electrical Engineering, King Khalid University, Abha, Saudi Arabia
2. Electric Systems Laboratory, ENIT, Tunis, Tunisia
3. Department of Electrical Power and Machines, Ain Shams University, Cairo, Egypt
Abstract
Publisher
SAGE Publications
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Link
http://journals.sagepub.com/doi/pdf/10.1177/0309524X18791387
Reference24 articles.
1. Artificial neural networks in power systems. Part 2: Types of artificial neural networks
2. An aggregate model of a grid-connected, large-scale, offshore wind farm for power stability investigations—importance of windmill mechanical system
3. Robust active disturbance rejection controller design to improve low‐voltage ride‐through capability of doubly fed induction generator wind farms
4. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines
5. Impact of load behavior on transient stability and power transfer limitations
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault ride-through capability enhancement of hydrogen energy-based distributed generators by using STATCOM with an intelligent control strategy;International Journal of Hydrogen Energy;2023-12
2. ANN Control for Improved Performance of Wind Energy System Connected to Grid;Advances in Electrical and Electronic Engineering;2023-02-28
3. Impact of grid-tied photovoltaic systems on voltage stability of tunisian distribution networks using dynamic reactive power control;Ain Shams Engineering Journal;2022-03
4. An Advanced MPPT Scheme for Standalone Solar powered PV System using Neuro-Fuzzy Estimator based on measured data;Journal of Engineering Research;2021-11-10
5. A novel approach in stand-alone photovoltaic system using MPPT controllers & NNE;Ain Shams Engineering Journal;2021-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3