Dynamic evaluation of optimization techniques–based proportional–integral controller for wind-driven permanent magnet synchronous generator

Author:

Mahmoud Mohamed Metwally1ORCID,Aly Mohamed M2,Salama Hossam S23,Abdel-Rahim Abdel-Moamen M1

Affiliation:

1. Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, Egypt

2. Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, Egypt

3. Department of Electric Power Engineering, Budapest University of Technology and Economics, Budapest, Hungary

Abstract

Converters of permanent magnet synchronous generator (PMSG), driven by wind turbines, are controlled by a classical proportional–integral controller. However, many research studies highlighted the challenge in PMSG due to the poor performance of the classical proportional–integral controller, especially in the event of faults or wind speed variations. This article proposes a solution for the limitations of the classical proportional–integral controller with PMSG driven by a wind turbine. The proposed solution includes two optimization techniques: gray wolf optimizer and whale optimizer algorithm. To ensure the effectiveness of the proposed techniques, step change and random variation of wind speed are studied. Moreover, fault ride-through capability of the PMSG is studied with gray wolf optimizer and whale optimizer algorithm techniques during the occurrence of a three-phase fault incident. In this case, a braking chopper controlled by a hysteresis controller is connected to the DC-link capacitor. The simulated results show that compared with the classical proportional–integral controller, gray wolf optimizer and whale optimizer algorithm techniques are greatly efficient in improving the dynamic behavior of the PMSG during wind speed variations. Moreover, gray wolf optimizer and whale optimizer algorithm techniques present their effectiveness during the fault incident by suppressing the transient variations of all the PMSG parameters, improving the fault ride-through capability, and decreasing the total harmonic distortion of the current waveforms. All simulations are performed with MATLAB/ Simulink program package.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3