Hyperglycemia, Lipoprotein Glycation, and Vascular Disease

Author:

Veiraiah Arvindan1

Affiliation:

1. Llandough Hospital, Penarth, Wales, UK

Abstract

Hyperlipidemia and its treatment are currently recognized as important modulators of cardiovascular mortality in the presence of disordered glucose control. On the other hand, the effects of hyperglycemia and its treatment on hyperlipidemia are not widely appreciated. Hyperglycemia is commonly associated with an increase in intestinal lipoproteins and a reduction in high-density lipoprotein (HDL). This could be a consequence of hyperglycemia-induced glycation of lipoproteins, which reduces the uptake and catabolism of the lipoproteins via the classical low-density lipoprotein (LDL) receptor. A high dietary carbohydrate load increases the glycation of intestinal lipoproteins, prolongs their circulation, and increases their plasma concentration. Hyperglycemia also leads to inhibition of lipoprotein lipase, further aggravating hyperlipidemia. Circulating advanced glycation end-products (AGEs) also bind lipoproteins and delay their clearance, a mechanism that has particularly been implicated in the dyslipidemia of diabetic nephropathy. As uptake via scavenger receptors is not inhibited, glycation increases the proportion of lipoproteins that are taken up via inflammatory cells and decreases the proportion taken up by hepatocytes via classical LDL receptors. This promotes the formation of atheromatous plaques and stimulates inflammation. Hyperglycemia increases the formation of oxidized LDL and glycated LDL, which are important modulators of atherosclerosis and cardiovascular death. The risk of cardiovascular death is increased by even short-term derangement of blood sugar control, owing perhaps to the glycation of lipoproteins and other critical proteins. Glycated LDL could prove very useful in measuring the effect of hyperglycemia on cardiovascular disease, its risk factors, and its complications. Comparing different glucose-lowering and lipid-lowering drugs in respect to their influence on glycated LDL could increase knowledge of the mechanism by which they alter cardiovascular risk.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3