Reoxygenation Attenuates the Adhesion of Neutrophils to Microvascular Endothelial Cells

Author:

Schmitz Katrin1,Jennewein Martina2,Pohlemann Tim2,Seekamp Andreas3,Oberringer Martin4

Affiliation:

1. Department of Trauma and Reconstructive Surgery, Westpfalz-Klinikum Kaiserslautern, Kaiserslautern, Germany

2. Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany

3. Department of Trauma Surgery, Schleswig-Holstein University, Campus Kiel, Kiel, Germany

4. Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany,

Abstract

In humans, the pathophysiological inflammation response subsequent to hypoxia and reoxygenation often leads to systemic inflammation and multiorgan failure. We applied a newly developed static interaction model using human polymorphonuclear neutrophils and microvasular endothelial cells to clarify the role of hypoxia and hypoxia/reoxygenation in vitro. Human dermal microvasular endothelial cell cultures (n = 7) were exposed to hypoxia and different reoxygenation periods and the adherence rate of neutrophils to the endothelial cells as well as to the protein matrix on the culture slide surface were determined by quantitative microscopy. Hypoxia clearly triggered neutrophil adhesion to human dermal microvasular endothelial cells whereas additional reoxygenation significantly decreased neutrophil adhesion. These in vitro findings suggest that systemic inflammation caused by increased neutrophil adherence to the microvascular endothelium is already initiated by hypoxia rather than by subsequent reoxygenation.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3