Co-cultivation of progenitor cells enhanced osteogenic gene expression and angiogenesis potential in vitro

Author:

Jia Yongsheng12,Zhang Cuicui32,Zheng Xiangqian124,Gao Ming1ORCID

Affiliation:

1. Thyroid and Neck Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China

2. Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China

3. Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China

4. Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin’s Clinical Research Center for Cancer, Tianjin, China

Abstract

Objectives The efficiencies of osteogenesis and angiogenesis present challenges that need to be overcome before bone tissue engineering can be widely applied to clinical uses. We aimed to optimize an in vitro culture system to enhance osteogenesis and angiogenesis. We investigated if hematopoietic stem cells (HSCs) promoted osteogenesis in vitro when co-cultured with mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Methods MSC/HSC, MSC/EPC/HSC, and MSC/EPC co-cultures were incubated for 21 days. Alkaline phosphatase (ALP) activity and calcium content were analyzed to assess mineralization. Expression levels of genes encoding osteogenesis-related proteins (ALP ( ALPL), collagen type IA ( COL1A1), osteocalcin ( BGLAP), and osteopontin ( OSTP)) were also evaluated by measuring mRNA levels at day 28. Angiogenesis was evaluated by tube-formation assay. Results COL1A1, OSTP, ALPL, and BGLAP genes were upregulated in MSC/HSC and MSC/EPC/HSC co-cultures compared with the MSC/EPC group. Upregulation was strongest in the MSC/EPC/HSC co-cultures. There were no significant changes in ALP levels and calcium content, but ALP activity was slightly higher and calcium content was relatively lower in the MSC/EPC and MSC/EPC/HSC groups. Conclusions Co-culture of MSCs with HSCs or EPCs/HSCs upregulated the expression of osteogenesis-related genes but did not affect the efficiency of osteogenesis.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3