β1 integrin-mediated multicellular resistance in hepatocellular carcinoma through activation of the FAK/Akt pathway

Author:

Tian Tao1,Li Chun-Li1,Fu Xiao1,Wang Shu-Hong1,Lu Jun2,Guo Hui1,Yao Yu1,Nan Ke-Jun1,Yang Yu-Juan3

Affiliation:

1. Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China

2. Clinical Research Centre, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China

3. Third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi’an, Shaanxi Province, China

Abstract

Objective To explore the role and mechanism of β1 integrin in the regulation of multicellular drug resistance in hepatocellular carcinoma (HCC). Methods This in vitro study used a liquid overlay technique to obtain multicellular spheroids of two human HCC cell lines, HepG2 and Bel-7402. The morphology of the spheroids was observed by optical and electron microscopy. The effects of exposure to 5-fluorouracil (5-FU) and cisplatin (CDDP) on cell proliferation and the induction of apoptosis were assessed in monolayer cells and multicellular spheroids. The levels of β1 integrin and the effects on the focal adhesion kinase (FAK)/protein kinase B (Akt) pathway were evaluated using Western blot analysis, immunofluorescence and flow cytometry. The role of β1 integrin was confirmed by using an inhibitory antibody. Results Cell proliferation inhibition and cell apoptosis induced by 5-FUl and CDDP were abrogated in multicellular spheroids compared with monolayer cells. There were high levels of β1 integrin in multicellular spheroids. β1 integrin inhibitory antibody prevented the formation of multicellular spheroids, coupled with a significant increase in proliferation inhibition and apoptosis induction. β1 integrin inhibitory antibody effectively suppressed activation of both FAK and Akt in multicellular spheroids. Conclusions β1 integrin mediated multicellular drug resistance through the FAK/Akt pathway in HCC spheroids.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3