Diagnosis of coronavirus disease 2019 and the potential role of deep learning: insights from the experience of Cairo University Hospitals

Author:

Ahmed Marwa M.1,Sayed Amal M.2,El Abd Dina2,El Sayed Inas T.1,Elkholy Yasmine S.3,Fares Ahmed H.4,Fares Samar1ORCID

Affiliation:

1. Family Medicine Department, Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt

2. Department of Clinical & Chemical Pathology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt

3. Department of Medical Microbiology & Immunology, Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt

4. Computer Science and Engineering Department, Faculty of Engineering, Benha University, Cairo, Egypt

Abstract

Objectives Early detection of coronavirus disease 2019 (COVID-19) is crucial for patients and public health to ensure pandemic control. We aimed to correlate clinical and laboratory data of patients with COVID-19 and their polymerase chain reaction (PCR) results and to assess the accuracy of a deep learning model in diagnosing COVID-19. Methods This was a retrospective study using an anonymized dataset of patients with suspected COVID-19. Only patients with a complete dataset were included (n = 440). A deep analytics framework and dual-modal approach for PCR-based classification was used, integrating symptoms and laboratory-based modalities. Results Participants with loss of smell or taste were two times more likely to have positive PCR results (odds ratio [OR] 1.86). Participants with neutropenia, high serum ferritin, or monocytosis were three, four, and five times more likely to have positive PCR results (OR 2.69, 4.18, 5.42, respectively). The rate of accuracy achieved using the deep learning framework was 78%, with sensitivity of 83.9% and specificity of 71.4%. Conclusion Loss of smell or taste, neutropenia, monocytosis, and high serum ferritin should be routinely assessed with suspected COVID-19 infection. The use of deep learning for diagnosis is a promising tool that can be implemented in the primary care setting.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3