The ABCB1 3435C > T polymorphism influences docetaxel transportation in ovarian cancer

Author:

Yin Beibei1,Lu Ping2,Liang Jing1,Zhang Wei3,Xin Meng1,Pei Ke4,Li Yan1ORCID

Affiliation:

1. Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China

2. Department of Cardiac Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China

3. Department of Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China

4. College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China

Abstract

Objective To investigate the effect of the ATP-binding cassette transporter superfamily B member 1 gene ( ABCB1) 3435C > T single nucleotide polymorphism (SNP) on docetaxel transportation in ovarian cancer cells. Methods ES-2 and SKOV3 cells were transfected with an ABCB1 3435C > T recombinant plasmid, and mRNA expression was detected by real-time PCR. The MTT assay was used to detect the toxicity of docetaxel. High-performance liquid chromatography determined the drug concentration in different cell models to evaluate intracellular accumulation, and a transmembrane resistance experiment was used to assess permeability and evaluate the effect of P-gp activity on drug transportation. A tumor-bearing mouse model was established to evaluate the effect of ABCB1 3435C > T on docetaxel resistance. Results P-gp was overexpressed in cells transfected with the ABCB1 3435C > T plasmid, leading to a significant increase in drug resistance to docetaxel. ABCB1 3435C/wild-type transfection significantly promoted the transport of docetaxel mediated by P-gp compared with ABCB1 3435T/mutant transfection. Conclusion P-gp encoded by the ABCB1 variant allele appears to be more efficient at transporting docetaxel compared with the wild-type allele. The ABCB1 3435C > T SNP dramatically affected the efflux ability of P-gp against docetaxel, and may influence P-gp expression and activity.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3