Changes in brain activation during sedation induced by dexmedetomidine

Author:

Kim Won-Ho1,Cho Dongrae2,Lee Boreom2,Song Jae-Jin3,Shin Teo Jeon4

Affiliation:

1. Post-graduate student, School of Dentistry, Seoul National University, Seoul, Korea

2. Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea

3. Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, Korea

4. Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea

Abstract

Objective Dexmedetomidine (DEX) has been widely used as a sedative, acting as an α2-adrenergic agonist on autoreceptors, presynaptic receptors and postsynaptic receptors without risk of respiratory depression. Although consciousness impairment is closely related to disturbances of brain function in different frequency bands, the time-varying DEX effects on cortical activity in specific frequency bands has not yet been studied. Methods We used electroencephalography (EEG) to analyse differences in cerebral cortex activity between the awake and sedated states, using electromagnetic tomography (standardized low resolution electromagnetic tomography (sLORETA)) to localize multiple channel scalp recordings of cerebral electric activity to specific brain regions. Results The results revealed increased activity in the cuneus at delta-band frequencies, and in the posterior cingulate cortex at theta frequencies, during awake and sedated states induced by DEX at specific frequency bands. Differences in standardized low resolution cingulate gyrus were found in beta1 frequencies (13–18 Hz), and in the cuneus at gamma frequencies. Conclusion Cerebral cortical activity was significantly altered in various brain areas during DEX sedation, including parts of the default mode network and common midline core in different frequency ranges. These alterations may elucidate the mechanisms underlying DEX sedation.

Funder

Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education

the Promising-Pioneering Researcher Program through Seoul National University

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3