The function of microRNA-211 expression in post-fracture bone cell apoptosis involving the transforming growth factor-β/ phosphoinositide 3-kinase signaling pathway

Author:

Sun Tongxin1ORCID,Yang Dai1,Wu Yuanpeng1,Sheng Qingang2

Affiliation:

1. Department of Orthopedics, Dongying People’s Hospital, Dongying, Shandong province, P. R. China

2. Department of Orthopedics, Dongying District People’s Hospital, Dongying, Shandong province, P. R. China

Abstract

Background The underlying mechanism of micro (mi)RNA-211 in bone cell apoptosis after fracture remains unclear. This study aimed to determine the effect and function of miRNA-211 in bone cell apoptosis in fracture patients. Methods Serum samples were collected from patients with fractures and healthy controls. Serum miR-211 expression was detected by quantitative PCR. MC3T3-E1 cells were transfected with a transforming growth factor (TGF)-β inhibitor and phosphoinositide 3-kinase (PI3K) inhibitor. The viability of MC3T3-E1 cells was detected by the MTT assay, and apoptosis was detected by flow cytometry. Caspase-3/9 activity and the protein expression of TGF-β, PI3K, and p-Akt were detected by western blot and immunoprecipitation. Results In the fracture group, miRNA-211 expression was significantly up-regulated compared with controls. We used miRNA-211 mimics to up-regulate miRNA-211 expression, and observed inhibited cell viability and induced apoptosis and lactate dehydrogenase (LDH) activity. miRNA-211 up-regulation also suppressed the expression of TGF-β, PI3K, and p-Akt proteins. Conversely, miRNA-211 down-regulation increased cell viability and reduced apoptosis and LDH activity, as well as inducing the expression of TGF-β, PI3K, and p-Akt. Inhibiting TGF-β decreased the effect of anti-miRNA-211 on osteocyte apoptosis. Conclusion Our data indicate that miRNA-211 functions via the TGF-β/PI3K/Akt signaling pathway in patients with fractures.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3