Oxymatrine exerts anti-fibrotic effects in a rat model of hepatic fibrosis by suppressing endoplasmic reticulum stress

Author:

Liu Xiaodong1,Wang Dong2,Yang Wenping2,Wu Xiaomeng1ORCID

Affiliation:

1. Department of Pharmacy, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China

2. Department of Medical Comprehensive, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China

Abstract

Objective This study evaluated the anti-fibrotic effects of oxymatrine and the role of endoplasmic reticulum (ER) stress in hepatic fibrosis (HF) in animal models. Methods The HF rat model was established by exposure to NaAsO2, followed by treatment with oxymatrine. Biomarkers of HF and ER stress were measured. The difference in protein expression between groups was evaluated using isobaric tag for relative and absolute quantification (iTRAQ) analysis. The mechanism by which oxymatrine modulated ER stress to alleviate arsenic-induced HF was evaluated using LX2 hepatic stellate cells in vitro. Results The rat model mimicked the pathological and physical phenotypes of HF including ER stress, oxidative stress, impaired liver function, and fibrosis. Treatment with oxymatrine suppressed these responses. Moreover, apoptosis, inflammation, and hepatic stellate cell activation were also inhibited by oxymatrine treatment. The differentially expressed proteins and pathways related to ER stress were identified in the HF and oxymatrine-treated groups via iTRAQ analysis combined with liquid chromatography–mass spectrometry. LX2 cells were activated by NaAsO2 in vitro. Meanwhile, oxymatrine suppressed the activation of LX2 cells by alleviating ER stress and regulating cellular calcium homeostasis. Conclusions Oxymatrine could reverse NaAsO2-induced HF by alleviating ER stress.

Funder

Basic Scientific Research Project of Provincial Universities

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3