Impact of nonsurgical spinal decompression on paraspinal muscle morphology and mechanical properties in young adults with low back pain

Author:

Lo Wai Leung Ambrose12ORCID,Lei Di1ORCID,Leng Yan12,Huang Huanjie1,Wang Biru1,Yu Qiuhua1ORCID,Li Le12

Affiliation:

1. Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

2. Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Abstract

Objective The mechanism underlying the benefit of nonsurgical spinal decompression (NSSD) on low back pain is unclear. This study was performed to investigate the immediate impact of NSSD on the mechanical properties and morphology of the paraspinal muscles. Methods Participants with low back pain were recruited. NSSD therapy was provided on one occasion. A myotonometer was placed perpendicularly on the skin surface over the paraspinal muscle at the level of L3/L4 to measure the mechanical muscle properties. The multifidus thickness was measured using B-mode ultrasound and defined as the distance between the transverse process and subcutaneous tissue fascia. The difference between before and after NSSD was analyzed by a paired t-test. Results Thirty participants (mean age, 20.9 ± 0.8 years; 9 male, 21 female) were recruited. No significant difference was observed in the muscle mechanical properties or morphology between before and after the intervention. Conclusions NSSD intervention did not induce immediate changes in the paraspinal muscle mechanical properties or multifidus thickness in young adults with low back pain. NSSD might produce benefits by stimulating mechanical receptors rather than inducing morphological changes or mechanical property alterations of the muscle fibers. These parameters may not be suitable outcome measures for NSSD intervention.

Funder

Guangdong Province Medical Science Technology Research Grant

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3