Identification of downstream target genes regulated by the nitric oxide–soluble guanylate cyclase–cyclic guanosine monophosphate signal pathway in pulmonary hypertension

Author:

Zou Lihui1,Xu Xiaomao2,Zhai Zhenguo3,Yang Ting3,Jin Junhua1,Xiao Fei1,Wang Chen34

Affiliation:

1. Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China

2. Department of Respiratory and Critical Care Medicine, Beijing Hospital, Ministry of Health, Beijing, China

3. Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Ministry of Health, Beijing, China

4. National Clinical Research Center of Respiratory Medicine, Beijing, China

Abstract

Objective To investigate the downstream target genes regulated by the nitric oxide–soluble guanylate cyclase–cyclic guanosine monophosphate (NO-sGC-cGMP) signal pathway and their possible roles in the pathogenesis of pulmonary hypertension (PH). Methods Digital gene expression tag profiling was performed to identify genes that are differentially expressed after activation of the NO-sGC-cGMP signal pathway in human pulmonary artery smooth muscles cells using 8-bromo-cyclic guanosine monophosphate, BAY 41-2272 and BAY 60-2770. Results were confirmed using real-time polymerase chain reaction. Gene ontology and signal transduction network analyses were also performed. Results A number of genes were differentially expressed, including MMP1, SERPINB2, GREM1 and IL8. A total of 68 gene ontology terms and seven pathways were found to be associated with these genes. Most of these genes are involved in cell proliferation, cell migration and apoptosis, which may contribute to the pathological pulmonary vascular remodelling in PH. Conclusion These results may provide new insights into the molecular mechanisms of PH.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3