Affiliation:
1. Department of Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK and Department of Biochemistry, University of Edinburgh, Edinburgh, UK
Abstract
The study of molecular transport across gall-bladder epithelium may contribute to our understanding of the pathophysiology of gall-bladder disease. The aim of this study was to reconstitute and characterize single potassium ion channels in bovine gall-bladder epithelial mucosa – both apical and basolateral aspects. Standard subcellular fractionation techniques were used to form either apical or basolateral closed-membrane vesicles from the mucosal epithelium of fresh gall bladders from healthy young adult cattle. Vesicular ion channels were incorporated into voltage-clamped planar lipid bilayers under known ionic conditions and their conductances, reversal potentials, and voltages were characterized. Low-conductance voltage-insensitive apical membrane vesicle channels of at least four conductance levels were found (mean ± SD): 12 ± 4 pS, n = 10; 40 ± 12 pS, n = 4; 273 ± 31 pS, n = 3; and 151 ± 24 pS, n = 5. Conductances of potassium ion channels in basolateral membrane vesicles were in the range 9–450 pS, and these channels included high-conductance calcium-activated potassium-ion channels ‘K(Ca)’ which were voltage- and calcium-dependent.
Subject
Biochemistry (medical),Cell Biology,Biochemistry,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献