Inhibition of DNA methylation attenuates lung ischemia–reperfusion injury after lung transplantation

Author:

Liu Ming-yuan1,Ju Ying-nan2,Jia Bao-wei1,Sun Xi-kun1,Qiu Lin1ORCID,Liu Heng-yu1,Xu Guang-xiao1,Tai Qi-hang1,Tan Jing1,Gao Wei1

Affiliation:

1. Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China

2. Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China

Abstract

Objective DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia–reperfusion injury (LIRI). Methods We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. Results Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. Conclusions Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3