Biomechanical evaluation of axial-loading simulated experiment in wrist fractures: a finite element analysis

Author:

Fan You-Liang1,Xu Hai-Yun1,Xia Ming-Yang1,Zhang Wen2,Wen Hui-Long1,Gao Li-Bo1,Pei Yan-Hui1ORCID

Affiliation:

1. Department of Orthopaedics, Changzhou Fourth People's Hospital (Changzhou Cancer Hospital Affiliated to Soochow University), Changzhou, Jiangsu Province, China

2. Department of Orthopaedics, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu Province, China

Abstract

Objective To assess the biomechanical properties that influence wrist fracture, so as to provide the theoretical basis for simulation experiments to aid the optimal design of wrist protectors. Methods Six cadaveric wrists were included as experimental specimens. Wrist specimens wearing wrist protectors formed the experimental group and unprotected wrist specimens formed the control group. The wrist specimens were axially loaded under physiological loads and the stress magnitude and distribution of the experimental and control groups were obtained. A three-dimensional wrist finite element model of a healthy volunteer was developed to verify the rationality and effectiveness of the cadaveric wrist models. Results Under normal physiological loads, the stress on the radioulnar palmar unit was high and manifested in the form of pressure, while the stress on the radioulnar dorsal unit was lower and manifested in the form of tension. The stresses on the radial distal palmar, ulnar distal palmar, radial distal dorsal, ulnar distal dorsal, radial proximal palmar and ulnar proximal palmar units in the experimental group were less than those in the control group. Conclusion Under physiological loads, wearing a wrist protector can reduce the stress on the radioulnar distal palmar, radioulnar proximal palmar and radioulnar distal dorsal units, while having no obvious effect on the radioulnar proximal dorsal units.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite Element Modeling of the Human Wrist: A Review;Journal of Wrist Surgery;2023-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3