Integrated analyses of long noncoding RNAs and mRNAs in the progression of breast cancer

Author:

Guo Jingyun1ORCID,Lian Huining1,Liu Minfeng1,Dong Jianyu1,Guo Zhaoze1,Yang Jinlamao1,Ye Changsheng1

Affiliation:

1. Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

Abstract

Objective The objective was to explore the expression and potential functions of long noncoding RNA (lncRNA) and mRNAs in human breast cancer (BC). Methods Differentially expressed lncRNAs and mRNAs were identified and annotated in BC tissues by using the Agilent human lncRNA assay (Agilent Technologies, Santa Clara, CA, USA) and RNA sequencing. After identification of lncRNAs and mRNAs through quantitative reverse transcription polymerase chain reaction, we conducted a series of functional experiments to confirm the effects of knockdown of one lncRNA, TCONS_00029809, on the progression of BC. Results We discovered 238 lncRNAs and 200 mRNAs that were differentially expressed in BC tissues and para-carcinoma tissue. We showed that differentially expressed mRNAs were related to biological adhesion and biological regulation and mainly enriched in cytokine-cytokine receptor interaction, metabolic pathways, and PI3K-Akt signaling pathway. We created a protein–protein interaction network to analyze the proteins enriched in these pathways. We demonstrated that silencing of TCONS_00029809 remarkably inhibited proliferation, invasion, and migration of BC cells, and accelerated their apoptosis. Conclusions We identified a large number of differentially expressed lncRNAs and mRNAs, which provide data useful in understanding BC carcinogenesis. The lncRNA TCONS_00029809 may be involved in the development of BC.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3