Differential diagnostic value of the ResNet50, random forest, and DS ensemble models for papillary thyroid carcinoma and other thyroid nodules

Author:

Deng Chengwen1ORCID,Han Dongyan1,Feng Ming2,Lv Zhongwei1ORCID,Li Dan1

Affiliation:

1. Shanghai Tenth People’s Hospital Tongji University, Shanghai, China

2. Tongji University, Shanghai, China

Abstract

Objective To explore the differential diagnostic efficiency of the residual network (ResNet)50, random forest (RF), and DS ensemble models for papillary thyroid carcinoma (PTC) and other pathological types of thyroid nodules. Methods This study retrospectively analyzed 559 patients with thyroid nodules and collected thyroid pathological images and auxiliary examination results (laboratory and ultrasound results) to construct datasets. The pathological image dataset was used to train a ResNet50 model, the text dataset was used to train a random forest (RF) model, and a DS ensemble model was constructed from the results of the two models. The differential diagnostic values of the three models for PTC and other types of thyroid nodules were then compared. Results The DS ensemble model had the highest sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (85.87%, 97.18%, 93.77%, and 0.982, respectively). Conclusions Compared with Resnet50 and the RF models trained only on imaging data or text information, respectively, the DS ensemble model showed better diagnostic value for PTC.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3