MicroRNA-590-5p antagonizes the inhibitory effect of high glucose on osteoblast differentiation by suppressing Smad7 in MC3T3-E1 cells

Author:

Chen Yinan12,Sun Changhui2,Lu Jiong2,Zou Ling2,Hu Minwei2,Yang Zeyu2,Xu Yaozeng1ORCID

Affiliation:

1. Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China

2. Department of Orthopaedics, Rui Jin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Objective MicroRNA-590-5p (miR-590-5p) has been reported to stimulate osteoblast differentiation; however, its effect in diabetic osteoporosis remains unknown. This study investigated the effect of miR-590-5p on high glucose (HG)-suppressed osteoblast differentiation. Methods The effect of HG on MC3T3-E1 cell survival was assessed using the MTT assay. The expression levels and activities of osteoblastic proteins were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR), alkaline phosphatase (ALP) assay, and immunoblotting assay. Tumor growth factor-β (TGF-β) signaling in MC3T3-E1 cells was assessed using luciferase assay, qRT-PCR, and immunoblotting. Mineralized nodule formation in MC3T3-E1 cells was examined by using the mineralization assay. Results When MC3T3-E1 cells were exposed to HG conditions, there was significant downregulation of miR-590-5p and osteoblastic proteins (e.g., collagen I, Runx2, and ALP); in contrast, Smad7 was upregulated. Furthermore, miR-590-5p targeted Smad7 and inhibited its expression. Additionally, overexpression of miR-590-5p significantly promoted osteoblast growth and differentiation by upregulating TGF-β signaling in HG-treated MC3T3-E1 cells. Conclusions Collectively, the results showed that miR-590-5p was involved in osteogenesis; moreover, miR-590-5p may represent a potential target for the treatment of diabetic osteoporosis.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3