Role of the Hippo signaling pathway in safflower yellow pigment treatment of paraquat-induced pulmonary fibrosis

Author:

Li Hai1,Kan Baotian2,Song Lingli3,Liu Yufa1,Jian Xiangdong4ORCID

Affiliation:

1. Department of Emergency, Central Hospital of Zibo, Zibo, China

2. Departments of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China

3. Department of Emergency, Municipal Hospital of Weihai, Weihai, China

4. Departments of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan, China

Abstract

Objective To elucidate the molecular mechanisms by which safflower yellow (SY) mediates therapeutic effects in rats with paraquat intoxication-induced pulmonary fibrosis. Methods Rats received combinations of paraquat, SY, and SB431542, a transforming growth factor (TGF)-β1 receptor antagonist. Survival over 28 days was assessed by Kaplan–Meier analysis. Rat tissue and serum samples were assessed by hematoxylin and eosin staining, Masson’s Trichrome staining, immunoblotting, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and transmission electron microscopy. Results Survival rates were higher in SY and SB431542 groups (treatment and paraquat) than in the exposure group (paraquat alone). In the exposure group, serum TGF-β1 levels increased between days 3 and 14; mammalian STE20-like (MST) levels increased between days 3 and 7; TGF-β1 and Smad3 levels increased between days 3 and 14; and Yap and connective tissue growth factor levels increased between days 3 and 28. TGF-β1 levels were lower in SY and SB431542 groups than in the exposure group. Pathology scores were higher in exposure, SY, and SB431542 groups than in the control group throughout the experiment. Conclusions In rats with paraquat intoxication-induced pulmonary fibrosis, Hippo signaling could be activated by the MST-Yap pathway; SY and SB431542 could alleviate pulmonary fibrosis via Hippo signaling.

Funder

the Shandong Province Key Research and Development Projec

the Shandong Province Key Research and Development Project

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3