Potential role for immune-related genes in autism spectrum disorders: Evidence from genome-wide association meta-analysis of autistic traits

Author:

Arenella Martina12,Cadby Gemma3,De Witte Ward2,Jones Rachel M3,Whitehouse Andrew JO3,Moses Eric K34,Fornito Alex56,Bellgrove Mark A56,Hawi Ziarih56,Johnson Beth56,Tiego Jeggan56,Buitelaar Jan K278,Kiemeney Lambertus A2,Poelmans Geert2,Bralten Janita27ORCID

Affiliation:

1. Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK

2. Radboud University Medical Center, The Netherlands

3. The University of Western Australia, Australia

4. University of Tasmania, Australia

5. Turner Institute of Brain and Mental Health, Australia

6. Monash University, Australia

7. Donders Institute for Brain, Cognition and Behaviour, The Netherlands

8. Karakter Child and Adolescent Psychiatry University Centre, The Netherlands

Abstract

The clinical heterogeneity of autism spectrum disorders majorly challenges their genetic study. Autism spectrum disorders symptoms occur in milder forms in the general population, as autistic-like traits, and share genetic factors with autism spectrum disorders. Here, we investigate the genetics of individual autistic-like traits to improve our understanding of autism spectrum disorders. We meta-analysed four population-based genome-wide association studies investigating four autistic-like traits – ‘attention-to-detail’, ‘imagination’, ‘rigidity’ and ‘social-skills’ ( n = 4600). Using autism spectrum disorder summary statistics from the Psychiatric Genomic Consortium ( N = 46,350), we applied polygenic risk score analyses to understand the genetic relationship between autism spectrum disorders and autistic-like traits. Using MAGMA, we performed gene-based and gene co-expression network analyses to delineate involved genes and pathways. We identified two novel genome-wide significant loci – rs6125844 and rs3731197 – associated with ‘attention-to-detail’. We demonstrated shared genetic aetiology between autism spectrum disorders and ‘rigidity’. Analysing top variants and genes, we demonstrated a role of the immune-related genes RNF114, CDKN2A, KAZN, SPATA2 and ZNF816A in autistic-like traits. Brain-based genetic expression analyses further linked autistic-like traits to genes involved in immune functioning, and neuronal and synaptic signalling. Overall, our findings highlight the potential of the autistic-like trait–based approach to address the challenges of genetic research in autism spectrum disorders. We provide novel insights showing a potential role of the immune system in specific autism spectrum disorder dimensions. Lay abstract Autism spectrum disorders are complex, with a strong genetic basis. Genetic research in autism spectrum disorders is limited by the fact that these disorders are largely heterogeneous so that patients are variable in their clinical presentations. To address this limitation, we investigated the genetics of individual dimensions of the autism spectrum disorder phenotypes, or autistic-like traits. These autistic-like traits are continuous variations in autistic behaviours that occur in the general population. Therefore, we meta-analysed data from four different population cohorts in which autistic-like traits were measured. We performed a set of genetic analyses to identify common variants for autistic-like traits, understand how these variants related to autism spectrum disorders, and how they contribute to neurobiological processes. Our results showed genetic associations with specific autistic-like traits and a link to the immune system. We offer an example of the potential to use a dimensional approach when dealing with heterogeneous, complex disorder like autism spectrum disorder. Decomposing the complex autism spectrum disorder phenotype in its core features can inform on the specific biology of these features which is likely to account to clinical variability in patients.

Publisher

SAGE Publications

Subject

Developmental and Educational Psychology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3