Learning and Evolution in Neural Networks

Author:

Nolfi Stefano1,Parisi Domenico1,Elman Jeffrey L.2

Affiliation:

1. Institute of Psychology

2. University of California at San Diego

Abstract

This article describes simulations on populations of neural networks that both evolve at the population level and learn at the individual level. Unlike other simulations, the evolutionary task (finding food in the environment) and the learning task (predicting the next position of food on the basis of present position and planned network's movement) are different tasks. In these conditions, learning influences evolution (without Lamarckian inheritance of learned weight changes) and evolution influences learning. Average but not peak fitness has a better evolutionary growth with learning than without learning. After the initial generations, individuals that learn to predict during life also improve their food-finding ability during life. Furthermore, individuals that inherit an innate capacity to find food also inherit an innate predisposition to learn to predict the sensory consequences of their movements. They do not predict better at birth, but they do learn to predict better than individuals of the initial generation given the same learning experience. The results are interpreted in terms of a notion of dynamic correlation between the fitness surface and the learning surface. Evolution succeeds in finding both individuals that have high fitness and individuals that, although they do not have high fitness at birth, end up with high fitness because they learn to predict.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Reference21 articles.

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3