Experimental capabilities and limitations of a position-based control algorithm for swarm robotics

Author:

Zheng Yating12ORCID,Huepe Cristián134,Han Zhangang1

Affiliation:

1. School of Systems Science, Beijing Normal University, Beijing, China

2. IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

3. ESAM and Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA

4. Cristian Huepe Labs, Chicago, IL, USA

Abstract

Achieving efficient and reliable self-organization in groups of autonomous robots is a fundamental challenge in swarm robotics. Even simple states of collective motion, such as group translation or rotation, require nontrivial algorithms, sensors, and actuators to be achieved in real-world scenarios. We study here the capabilities and limitations in controlling experimental robot swarms of a decentralized control algorithm that only requires information on the positions of neighboring agents, and not on their headings. Using swarms of e-Puck robots, we implement this algorithm in experiments and show its ability to converge to self-organized collective translation or rotation, starting from a state with random orientations. Through a simple analytical calculation, we also unveil an essential limitation of the algorithm that produces small persistent oscillations of the aligned state, related to its marginal stability. By comparing predictions and measurements, we compute the experimental noise distributions of the linear and angular robot speeds, showing that they are well described by Gaussian functions. We then implement simulations that model this noise by adding Gaussian random variables with the experimentally measured standard deviations. These simulations are performed for multiple parameter combinations and compared to experiments, showing that they provide good predictions for the expected speed and robustness of the self-organizing dynamics.

Funder

China Scholarship Council

national natural science foundation of china

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3