Encouraging reactivity to create robust machines

Author:

Lehman Joel1,Risi Sebastian2,D’Ambrosio David3,O Stanley Kenneth4

Affiliation:

1. The University of Texas at Austin, Austin, TX, USA

2. Cornell University, Ithaca, NY, USA

3. Space and Naval Warfare Systems Center Pacic, San Diego, CA, USA

4. University of Central Florida, Orlando, FL, USA

Abstract

The robustness of animal behavior is unmatched by current machines, which often falter when exposed to unforeseen conditions. While animals are notably reactive to changes in their environment, machines often follow finely tuned yet inflexible plans. Thus, instead of the traditional approach of training such machines over many different unpredictable scenarios in detailed simulations (which is the most intuitive approach to inducing robustness), this work proposes to train machines to be reactive to their environment. The idea is that robustness may result not from detailed internal models or finely tuned control policies but from cautious exploratory behavior. Supporting this hypothesis, robots trained to navigate mazes with a reactive disposition prove more robust than those trained over many trials yet not rewarded for reactive behavior in both simulated tests and when embodied in real robots. The conclusion is that robustness may neither require an accurate model nor finely calibrated behavior.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3