Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks

Author:

Cyr André1,Boukadoum Mounir1

Affiliation:

1. Computer Science Department, Université du Québec à Montréal, Montréal, Québec, Canada

Abstract

This work investigates adaptive behaviours for an intelligent robotic agent when subjected to temporal stimuli consisting of associations of contextual cues and simple reflexes. This is made possible thanks to a novel learning rule based on spike-timing-dependent plasticity and embedded in an artificial spiking neural network serving as a brain-like controller. The subsequent bio-inspired cognitive system carries out different classical conditioning tasks in a controlled virtual 3D-world while the timing and frequency of unconditioned and conditioned parameters are varied. The results of this simulated robotic environment are analysed at different stages from stimuli capture to neural spike generation and show extended behavioural capabilities by the robot in the temporal domain.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3