Hedonic value: enhancing adaptation for motivated agents

Author:

Cos Ignasi12,Cañamero Lola2,Hayes Gillian M1,Gillies Andrew3

Affiliation:

1. Institute of Perception, Action and Behavior, School of Informatics, University of Edinburgh, Informatics Forum, Edinburgh, UK

2. Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire, Hatfield, Herts, UK

3. Institute of Artificial and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract

Reinforcement learning (RL) in the context of artificial agents is typically used to produce behavioral responses as a function of the reward obtained by interaction with the environment. When the problem consists of learning the shortest path to a goal, it is common to use reward functions yielding a fixed value after each decision, for example a positive value if the target location has been attained and a negative value at each intermediate step. However, this fixed strategy may be overly simplistic for agents to adapt to dynamic environments, in which resources may vary from time to time. By contrast, there is significant evidence that most living beings internally modulate reward value as a function of their context to expand their range of adaptivity. Inspired by the potential of this operation, we present a review of its underlying processes and we introduce a simplified formalization for artificial agents. The performance of this formalism is tested by monitoring the adaptation of an agent endowed with a model of motivated actor–critic, embedded with our formalization of value and constrained by physiological stability, to environments with different resource distribution. Our main result shows that the manner in which reward is internally processed as a function of the agent’s motivational state, strongly influences adaptivity of the behavioral cycles generated and the agent’s physiological stability.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3