Constrained representation learning for recurrent policy optimisation under uncertainty

Author:

Dang Viet-Hung1,Vien Ngo Anh2ORCID,Chung TaeChoong3

Affiliation:

1. Institute of Research and Development, DuyTan University, Vietnam

2. School of EEECS, Queen’s University Belfast, UK

3. Artificial Intelligent Lab, Department of Computer Engineering, Kyung Hee University, Korea

Abstract

Learning to make decisions in partially observable environments is a notorious problem that requires a complex representation of controllers. In most work, the controllers are designed as a non-linear mapping from a sequence of temporal observations to actions. These problems can, in principle, be formulated as a partially observable Markov decision process whose policy can be parameterised through the use of recurrent neural networks. In this paper, we will propose an alternative framework that (a) uses the Long-Short-Term-Memory (LSTM) Encoder-Decoder framework to learn an internal state representation for historical observations and then (b) integrates it into existing recurrent policy models to improve the task performance. The LSTM Encoder encodes a history of observations as input into a representation of internal states. The LSTM Decoder can perform two alternative decoding tasks: predicting the same input observation sequence or predicting future observation sequences. The first proposed decoder acts like an auto-encoder that will guide and constrain the learning of a useful internal state for the policy optimisation task. The second proposed decoder decodes the learnt internal state by the encoder to predict future observation sequences. This idea makes the network act like a non-linear predictive state representation model. Both these decoding parts, which introduce constraints to policy representation, will help guide both the policy optimisation problem and latent state representation learning. The integration of representation learning and policy optimisation aims to help learn more complex policies and improve the performance of policy learning tasks.

Funder

national foundation for science and technology development

national research foundation of korea

royal society

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3