A robust policy bootstrapping algorithm for multi-objective reinforcement learning in non-stationary environments

Author:

Abdelfattah Sherif1ORCID,Kasmarik Kathryn1,Hu Jiankun1

Affiliation:

1. School of Engineering and Information Technology, UNSW Canberra, Canberra, ACT, Australia

Abstract

Multi-objective Markov decision processes are a special kind of multi-objective optimization problem that involves sequential decision making while satisfying the Markov property of stochastic processes. Multi-objective reinforcement learning methods address this kind of problem by fusing the reinforcement learning paradigm with multi-objective optimization techniques. One major drawback of these methods is the lack of adaptability to non-stationary dynamics in the environment. This is because they adopt optimization procedures that assume stationarity in order to evolve a coverage set of policies that can solve the problem. This article introduces a developmental optimization approach that can evolve the policy coverage set while exploring the preference space over the defined objectives in an online manner. We propose a novel multi-objective reinforcement learning algorithm that can robustly evolve a convex coverage set of policies in an online manner in non-stationary environments. We compare the proposed algorithm with two state-of-the-art multi-objective reinforcement learning algorithms in stationary and non-stationary environments. Results showed that the proposed algorithm significantly outperforms the existing algorithms in non-stationary environments while achieving comparable results in stationary environments.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online reinforcement learning-based inventory control for intelligent E-Fulfilment dealing with nonstationary demand;Enterprise Information Systems;2023-11-26

2. Design of Cognitive Jamming Decision-Making System Against MFR Based on Reinforcement Learning;IEEE Transactions on Vehicular Technology;2023-08

3. The Need for MORE: Need Systems as Non-Linear Multi-Objective Reinforcement Learning;2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob);2020-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3