Anytime Learning and Adaptation of Structured Fuzzy Behaviors

Author:

Bonarini Andrea1

Affiliation:

1. Politecnico di Milano Artificial Intelligence and Robotics Project, Dipartimento di Elettronica e Informazione-Politecnico di Milano, Piazza Leonardo da Vinci, 32-20133 Milano, Italy

Abstract

We present an approach to support effective learning and adaptation of behaviors for autonomous agents with reinforcement learning algorithms. These methods can identify control systems that optimize a reinforcement program, which is, usually, a straightforward representation of the designer's goals. Reinforcement learning algorithms usually are too slow to be applied in real time on embodied agents, although they provide a suitable way to represent the desired behavior. We have tackled three aspects of this problem: the speed of the algorithm, the learning procedure, and the control system architecture. The learning algorithm we have developed includes features to speed up learning, such as niche-based learning, and a representation of the control modules in terms of fuzzy rules that reduces the search space and improves robustness to noisy data. Our learning procedure exploits methodologies such as learning from easy missions and transfer of policy from simpler environments to the more complex. The architecture of our control system is layered and modular, so that each module has a low complexity and can be learned in a short time. The composition of the actions proposed by the modules is either learned or predefined. Finally, we adopt an anytime learning approach to improve the quality of the control system on-line and to adapt it to dynamic environments. The experiments we present in this article concern learning to reach another moving agent in a real, dynamic environment that includes nontrivial situations such as that in which the moving target is faster than the agent and that in which the target is hidden by obstacles.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A classifier ensemble approach to the TV-viewer profile adaptation problem;International Journal of Machine Learning and Cybernetics;2012-01-08

2. A case study for learning behaviors in mobile robotics by evolutionary fuzzy systems;Expert Systems with Applications;2010-03

3. Interpretability constraints for fuzzy information granulation;Information Sciences;2008-12

4. LEARNING FUZZY CLASSIFIER SYSTEMS: ARCHITECTURE AND EXPLORATION ISSUES;International Journal on Artificial Intelligence Tools;2007-04

5. Fuzzy classifier system architectures for mobile robotics: An experimental comparison;International Journal of Intelligent Systems;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3