Intrinsically motivated particle swarm optimisation applied to task allocation for workplace hazard detection

Author:

Klyne Adam1,Merrick Kathryn1

Affiliation:

1. University of New South Wales, Canberra, Australia

Abstract

This paper presents a framework for integrating intrinsic motivation with particle swarm optimisation. Intrinsically motivated particle swarm optimisation can be used for adaptive task allocation when the nature of the target task is not well understood in advance, or can change over time. We first present a general framework in which a computational model of motivation generates a dynamic fitness function to focus the attention of the particle swarm. We then discuss two approaches to modelling motivation in this framework: a computational model of curiosity using an unsupervised neural network and a model of novelty based on background subtraction. We introduce metrics for evaluating intrinsically motivated particle swarm optimisation and test our algorithm as an approach to task allocation in a workplace hazard mitigation scenario. We found that both proposed motivation techniques work well for generating a fitness function that can locate hazards, without requiring a precise definition of a hazard. We found that particle swarm optimisation can converge on optima in our generated fitness landscape in some, but not all, of our simulations.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Swarm Robotics: A Survey from a Multi-Tasking Perspective;ACM Computing Surveys;2023-09-15

2. A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades—Part B;IEEE Transactions on Evolutionary Computation;2021-08

3. Task allocation of multiple vehicles to attack targets by using particle swarm optimization algorithm;Twelfth International Conference on Graphics and Image Processing (ICGIP 2020);2021-01-27

4. Towards intrinsic autonomy through evolutionary computation;Artificial Intelligence Review;2019-12-17

5. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna;GSA Bulletin;2019-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3