Fibrous star poly(ε-caprolactone) melt-electrospun scaffolds for wound healing applications

Author:

Gazzarri Matteo1,Bartoli Cristina1,Mota Carlos1,Puppi Dario1,Dinucci Dinuccio1,Volpi Silvia1,Chiellini Federica1

Affiliation:

1. Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOLab), Department of Chemistry and Industrial Chemistry, University of Pisa, San Piero a Grado (Pi), Italy

Abstract

Polymeric fibrous scaffolds based on the biocompatible and biodegradable three-arm-branched star poly(ε-caprolactone) (Mw = 189,000 g/mol) were prepared by a melt electrospinning technique. The possibility of processing polymers without the use of organic solvents is one of the main advantages over solution electrospinning. Scaffolds were biologically tested for their ability of supporting skin tissue regeneration. For this purpose, mouse embryo fibroblast (BALB/3T3 clone A31) and human keratinocyte (HaCaT) cell lines were selected as models, and seeded onto the polymeric supports both as single and co-culture. Cell viability, proliferation, and collagen production were assessed by WST-1 assay and Direct Red 80 dye, respectively. Cell morphology and colonization of the supports were evaluated by scanning electron microscopy and confocal laser scanning microscopy. Results highlighted that the star poly(ε-caprolactone) scaffolds were able to promote collagen production by fibroblasts. In co-culture studies, scaffolds supported adhesion, proliferation, and spatial organization of both cell lines. By virtue of the observed results, the developed polymeric scaffolds appeared suitable as biodegradable and biocompatible three-dimensional supports for skin tissue regeneration in wound healing dressing.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3