Antimicrobial nature and healing behavior of plasma functionalized polyester sutures

Author:

Anjum Sadiya1,Gupta Amlan2,Sharma Deepika2,Kumari Shanti1,Sahariah Plabita3,Bora Jutishna3,Bhan Surya3,Gupta Bhuvanesh1

Affiliation:

1. Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India

2. Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India

3. Department of Biochemistry, North-Eastern Hill University, Shillong, India

Abstract

This study deals with the development of bioactive poly(ethylene terephthalate) surgical suture by adopting the immobilization route with bioactive nanogels and chlorhexidine. Carbon dioxide plasma was used for the generation of carboxyl functionality on poly(ethylene terephthalate) surface for the immobilization of the bioactive components. The nanosilver nanogel was prepared using polyethylene glycol which helps in the reduction of silver ions into nanosilver as well as the stabilization of nanoparticles. The particle size of the nanogels, as evaluated by high-resolution transmission electron microscopy, was observed to be in the range of 10–50 nm. Surface functionalization of poly(ethylene terephthalate) filament was observed by attenuated total reflectance measurements and mechanical studies were investigated by Instron. Elemental analysis and surface topography were carried out by energy dispersive X-ray and atomic force microscopy. The cumulative release of silver from the dressing was found to be 68% of the total loading after 72 h. Coated sutures have excellent antimicrobial activity against both Escherichia coli and Staphylococcus aureus. In vivo wound healing and histopathology studies were carried out over a period of 72 h for skin wounds created on Swiss albino mice. Fast healing was observed in nanogel-treated wounds without any inflammatory effects on the newly generated skin. These sutures offer improved healing along with excellent antimicrobial properties and appear to be promising material against surgical infection.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3