Characterization of collagen type I/tannic acid beads as a cell scaffold

Author:

Baldwin Andrew1,Uy Lisa1,Booth Brian W1ORCID

Affiliation:

1. Department of Bioengineering, Clemson University, Clemson, SC, USA

Abstract

Breast cancer is the most commonly diagnosed cancer among women worldwide. Surgical removal of tumors is often necessary and many patients suffer complications due to subsequent breast reconstruction. A safe and effective breast reconstructive material is needed for patients recovering from surgical removal of small breast cancer tumors. Our lab has developed injectable collagen/tannic acid beads seeded with patient-derived preadipocytes for regeneration of healthy breast tissue in patients post-lumpectomy. Previous research indicates that the inclusion of tannic acid in the matrix imparts an anticancer property. This research seeks to determine the variables needed to control collagen/tannic acid bead diameter and seeded cell attachment, which are essential to proper bead implantation and function. We found that as tannic acid concentration increases within the beads, cell attachment decreases. Bead diameter is controlled by bead generator voltage, solution osmolality, the degree of cell attachment, and tannic acid concentrations. Higher voltages resulted in significant decrease in bead diameter. Collagen/tannic acid beads decreased in diameter when placed in solutions of increasing osmolality. Higher degrees of cell attachment across the surface of the beads were associated with a significant decrease in diameter. In beads made with high concentrations of tannic acid, bead diameter was found to decrease. Collagen/TA beads are a promising subdermal tissue regenerative matrix with anticancer activity as an alternative to simple lipofilling in breast reconstructive procedures. This study was conducted to better understand the properties of collagen/TA beads in order to improve injection efficacy and tissue regenerative activity.

Funder

Dabo’s All In Team Foundation

Clemson University Honors College

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3