Plasma-activated fibrinogen coatings onto poly(vinylidene fluoride) surface for improving biocompatibility with tissues

Author:

Stoleru Elena1,Baican Mihaela C2,Coroaba Adina1,Hitruc Gabriela E1,Lungu Maria3,Vasile Cornelia1

Affiliation:

1. “P. Poni” Institute of Macromolecular Chemistry, Iasi, Romania

2. “Gr. T. Popa” University of Medicine and Pharmacy, Iasi, Romania

3. National Institute of Research and Development for Biological Sciences, Bucharest, Romania

Abstract

CO2, N2, and N2/H2 radiofrequency plasma exposure was used for functionalization of poly(vinylidene fluoride) surface aiming the fibrinogen immobilization. Fibrinogen was immobilized onto poly(vinylidene fluoride) surface using both simple plasma activation and covalent coupling. The modified surfaces have been characterized by X-ray photoelectron spectroscopy, attenuated total reflectance–Fourier transform infrared spectroscopy, near infrared–chemical imaging, atomic force microscopy, and wettability measurements, and the obtained materials were tested as supports for fibroblast cell cultures. The plasma type and the immobilization procedure have influenced the fibrinogen attachment onto the poly(vinylidene fluoride) surface, which was achieved mainly through amide bonds when using coupling agents. Covalent immobilization of fibrinogen onto poly(vinylidene fluoride) surface leads to a more stable protein-modified polymer surface. Non-cytotoxic plasma-based coating technology has the ability to covalently immobilize bioactive molecules for surface modification of some biomaterials that mainly could be achieved by the immobilization of proteins such as fibrinogen that triggers desirable cellular responses. The fibrinogen-modified poly(vinylidene fluoride) materials showed increased cell viability of fibroblasts. Cell viability was enhanced by plasma-activated fibrinogen coatings onto poly(vinylidene fluoride) surface, this being more significant if coating was linked further by a coupling reaction. Hence, they could be good candidates for biomedical applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3