Effect of rat bone marrow derived–stem cell delivery from serum-loaded oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone tissue regeneration using a nude mouse critical-sized calvarial defect model

Author:

Paul Kallyanashis1,Linh Nguyen Thuy Ba2,Kim Bo-ram1,Sarkar Swapan Kumar2,Choi Hwan-Jun3,Bae Sang-Ho4,Min Young-Ki5,Lee Byong-Taek12

Affiliation:

1. Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea

2. Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea

3. Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan, South Korea

4. Department of Surgery, College of Medicine, Soonchunhyang University, Cheonan, South Korea

5. Department of Physiology College of Medicine, Soonchunhyang University, Cheonan, South Korea

Abstract

Blood serum contains various kinds of proteins which are necessary for tissue repair and regeneration process. Defect healing of fractured bone is initiated by the influx of blood and then clot formation. Thus, proteins in serum may have the ability to stimulate the bone regeneration process. In this work, we investigated the fabrication of serum-loaded oxidized alginate–gelatin–biphasic calcium phosphate hydrogels with various contents of blood serum (0%, 5%, 10%, and 15% in % v/v) to evaluate the stimulatory effect of serum proteins on bone regeneration. This system was also evaluated for rat bone marrow–derived stem cell delivery to get faster bone healing. The serum-loaded oxidized alginate–gelatin–biphasic calcium phosphate hydrogel samples were characterized by scanning electron microscopy, porosity meter, X-ray diffraction, and Fourier transform infrared for morphology and phase characterization together with their mechanical behavior. Protein release behavior, degradation, and swelling of the samples were studied. In vitro study was performed using bone marrow–derived stem cells to study cell attachment, viability, and proliferation. These studies revealed the best cell attachment and highest proliferation for 5% serum-loaded oxidized alginate–gelatin–biphasic calcium phosphate hydrogel scaffold. This composition also showed the ability to deliver stem cell in the defect zone which significantly improved the bone regeneration extent found in the in vivo animal model. In vivo study revealed that for the critical 5-mm calvarial defect into nude mouse skull, the 5% serum-loaded sample with bone marrow–derived stem cells shows the best bone regeneration potential.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3