Effect of N/P ratios on physicochemical stability, cellular association, and gene silencing efficiency for trimethyl chitosan/small interfering RNA complexes

Author:

Liu Xing1,Ma Lie1,Qin Wenlong1,Gao Changyou12

Affiliation:

1. Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China

2. State Key Laboratory of Diagnosis and Treatment for Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

Abstract

N,N,N-Trimethyl chitosan (TMC) with 40% quaternization was used as a vector for small interfering RNA (siRNA) delivery. Nano-sized complexes were formed in water by mixing siRNA with TMC; the smallest particle sizes were obtained at a N/P ratio of 10. The complexes had a positive surface charge that increased with increases in the N/P ratio and leveled off at +20 mV with N/P ratios > 10. The majority of particles had a diameter <100 nm under transmission electron microscope (TEM). When the N/P ratio was >10, the binding efficiency of TMC with siRNA was >90%. In 25% fetal bovine serum, the TMC/siRNA complexes with N/P ratios of 10 and 20 were intact for 12 and 48 h, respectively. TMC/siRNA complexes with an N/P ratio > 5 efficiently entered the human embryonic kidney (HEK) 293 cells and trapped initially in the lysosomes, which could then relocate in the cytoplasm. Gene silencing, tested by using enhanced green fluorescent protein (EGFP), was reduced to ~60% by the complexes with N/P ratios of 10 and 20. Specific silencing was confirmed by dose dependency and nonsilencing effect of sequence-mismatch siRNA. No significant cytotoxicity was detected for the TMC/siRNA complexes. In this study, the influence of the N/P ratio on TMC/siRNA complexes was systematically investigated and TMC was found to be an effective vector for siRNA delivery using optimized formulations.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3