Synthesis of cross-linked polymer based on purified Sterculia foetida L. gum as a potential hemostatic agent

Author:

Le Xuan Tien1,Tong Thanh Danh1,Le Thanh Tung1,Dung Pham Nguyen Thuy2ORCID,Bach Long Giang2

Affiliation:

1. Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

2. Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

Abstract

A method for purifying the polysaccharides from Sterculia foetida L. gum was developed. The effects of purifying conditions were also studied. Results have shown that the conditions of pH 0.5, temperature of 80°C, and 2.5-h reaction duration gave the best polysaccharides yield. The mineral content and the molecular weight of the obtained polysaccharides were measured for characterization. The cross-linking of the polysaccharides with citric acid in order to achieve a desired polymer was performed successfully. The obtained polymers under different conditions were evaluated for the potential application as a hemostatic agent, including tests of swelling behavior in different fluids, whole-blood clotting time and enzymatic bio-degradation. Results have shown that the citric acid/polysaccharides ratio of 0.01 produced a comparative yield of polymer flakes with increased swelling properties, as well as shortened in vitro blood clotting time and gradual biodegradability in three experimental days. Therefore, the citric acid/polysaccharides ratio of 0.01 was selected for the subsequent experiment to obtain the polymer after 1.5 h of purification, which gave the best swelling properties, 20 times the initial weight, reduced the whole-blood clotting time by 50% and showed a rapid bio-degradation. The results obtained from this study provide essential knowledge on the research of the use of S. foetida gum polysaccharides as a passive hemostatic agent, thereby extending the potential pharmaceutical applications of natural polysaccharides in Vietnam.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3