Electrospun Nanofibers Surface-modified with Fluorescent Proteins

Author:

Suk Choi Ji1,Sang Yoo Hyuk2

Affiliation:

1. Department of Biomaterials Engineering, School of Bioscience and Bioengineering, Kangwon National University, Chuncheon Republic of Korea, 200-701

2. Department of Biomaterials Engineering, School of Bioscience and Bioengineering, Kangwon National University, Chuncheon Republic of Korea, 200-701, Institute of Bioscience and Biotechnology Kangwon National University, pub.com

Abstract

Electrospun nanofiber surfaces are modified with proteins to control protein release. A mixture of poly(ε-caprolactone) (PCL) and PCL—PEG block copolymers is electrospun to prepare amine-terminated block copolymers. The amount of surface exposed amine groups increases as the blend ratio of block copolymer increases. Cell attachments on the nanofibers change according to the ratio of the block copolymer in the blend; this indicates that the PEG moiety plays a significant role in enhancing and decreasing biocompatibility of nanofibers. Fluorescent proteins are immobilized on the surface of nanofibers by conjugating activated carboxylic groups of the protein to the surface exposed amine groups of nanofibers in an aqueous environment. The number of amine groups increases as the ratio of block copolymers increases. Proteins that are chemically associated with the nanofibers show an attenuated release profile while most of the proteins physically associated with the nanofibers are released in 1 day. These results show that the protein-immobilized nanofibers can be potentially applied to tissue engineering scaffolds and wound healing materials with bioactive protein being slowly released over a long period of time.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3