Epithelial cell adhesion on films mimicking surface of polymeric scaffolds of artificial urethra compared to molecular modeling of integrin binding

Author:

Kollar Jakub1,Morelli Andrea2,Chiellini Federica2,Miertus Stanislav34,Bakos Dusan45,Frecer Vladimir14ORCID

Affiliation:

1. Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia

2. Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Pisa, Italy

3. Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia

4. International Centre for Applied Science and Sustainable Technology (ICARST), Bratislava, Slovakia

5. Department of Plastics, Rubber and Fibres, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia

Abstract

In this study, a combined experimental and computational study of long-term human bladder epithelial cell line HBLAK adhesion and proliferation on five different polymeric surfaces, namely hyaluronic acid, amylose, collagen, polyhydroxybutyrate, and polylactic acid, was performed with the goal to understand the nature of the attraction between various surface materials and a simplified model of the cell surface (transmembrane protein integrin). These biodegradable polymers are frequently used as scaffolds for tissue engineering. During formation of the new tissue, the scaffold polymers are gradually replaced by the natural extracellular matrix of the proliferating cells. Cell adhesion and proliferation experiments were carried out employing thin polymer films prepared by solvent casting while for the computational approach three-dimensional molecular models of layers of ordered polymeric fibers were used as quasi-planar nano-sized models of polymeric surface patches. Experimental results indicated a good capability of amylose, polyhydroxybutyrate, and hyaluronic acid polymer films to foster cell adhesion. Proliferation experiment, carried out by incubating cells with the investigated polymer films for 72 h, showed that all the investigated polymers are able to sustain a good proliferation of HBLAK cells almost comparable to plain glass. Computational estimate of molecular mechanic interaction energies between three-dimensional models of polymeric films and the collagen-binding α2 I domain of the cell adhesion receptor integrin α2β1 confirmed elevated affinity to amylose and polyhydroxybutyrate that is related to higher polarity of function groups on the film surface as documented by the maps of molecular electrostatic potential. This combined experimental and modeling approach can contribute to rational design and surface modifications of polymeric material suitable for forming the scaffolds of human urethra that can be effectively colonized by stem cells.

Funder

Granting Agency of Slovak Ministry of Education and Slovak Academy of Sciences

agentúra na podporu výskumu a vývoja

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3