Affiliation:
1. Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
2. Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia
3. Department of Orthopedics, Traumatology and Rehabilitation, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
Abstract
The use of synthetically derived poly(lactic- co-glycolic acid) scaffold and naturally derived materials in regeneration of intervertebral disks has been reported in many previous studies. However, the potential effect of poly(lactic- co-glycolic acid) in combination with atelocollagen or fibrin or both atelocollagen and fibrin bioscaffold composite have not been mentioned so far. This study aims to fabricate and characterize three-dimensional poly(lactic- co-glycolic acid) scaffold incorporated with (1) atelocollagen, (2) fibrin, and (3) both atelocollagen and fibrin combination for intervertebral disk tissue engineering application. The poly(lactic- co-glycolic acid) without any natural, bioscaffold composites was used as control. The chemical conformation, morphology, cell–scaffold attachment, porosity, water uptake capacity, thermal properties, mechanical strength, and pH level were evaluated on all scaffolds using attenuated total reflectance Fourier transform infrared, scanning electron microscope, gravimetric analysis, swelling test, differential scanning calorimetry, and Instron E3000, respectively. Biocompatibility test was conducted to assess the intervertebral disk, annulus fibrosus cells viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The attenuated total reflectance Fourier transform infrared results demonstrated notable peaks of amide bond suggesting interaction of atelocollagen, fibrin, and both atelocollagen and fibrin combination into the poly(lactic- co-glycolic acid) scaffold. Based on the scanning electron microscope observation, the pore size of the poly(lactic- co-glycolic acid) structure significantly reduced when it was incorporated with atelocollagen and fibrin. The poly(lactic- co-glycolic acid)–atelocollagen scaffolds demonstrated higher significant swelling ratios, mechanical strength, and thermal stability than the poly(lactic- co-glycolic acid) scaffold alone. All the three bioscaffold composite groups exhibited the ability to reduce the acidic poly(lactic- co-glycolic acid) by-product. In this study, the biocompatibility assessment using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cells proliferation assay demonstrated a significantly higher annulus fibrosus cells viability in poly(lactic- co-glycolic acid)–atelocollagen–fibrin compared to poly(lactic- co-glycolic acid) alone. The cellular attachment is comparable in poly(lactic- co-glycolic acid)–atelocollagen–fibrin and poly(lactic- co-glycolic acid)–fibrin scaffolds. Overall, these results may suggest potential use of poly(lactic- co-glycolic acid) combined with atelocollagen and fibrin bioscaffold composite for intervertebral disk regeneration.
Funder
Ministry of Higher Education, Malaysia
Subject
Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献