Nuclear location signal peptide–modified poly (ethyleneimine)/DNA complexes: An efficient gene delivery vector in vitro and in vivo

Author:

Zhang Hua1,Liang Zhongyan2,Li Wanli1,Li Fangcai1,Chen Qixin1

Affiliation:

1. Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

2. The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Abstract

The low transfection efficiency of nonviral gene delivery systems limits their applications. In this study, we demonstrated a simple method to modify poly(ethyleneimine)/DNA complexes with a nuclear location signal peptide via bis(succinimidyl) penta(ethylene glycol) coupling. The amount of grafted nuclear location signal peptide was controlled within a range of 0–9 µg for poly(ethyleneimine)/DNA complexes containing 10 µg DNA and 100 µg poly(ethyleneimine) by adjusting the grafting agent and peptide feeds. The particle size and surface zeta-potential of the complexes were largely retained after nuclear location signal immobilization. Based on the results of the flow cytometry measurements, the nuclear location signal–modified poly(ethyleneimine)/DNA complexes were internalized into at bone marrow stem cells at a significantly faster rate and a higher amount than the unmodified complexes. In vitro transfection experiments, using plasmid DNA encoding bone morphogenetic protein 2, indicated that the nuclear location signal peptide–modified poly(ethyleneimine)/DNA complexes have significantly higher gene transfection ability toward bone marrow stem cells than unmodified complexes. The porous collagen scaffolds loaded with nuclear location signal–modified poly(ethyleneimine)/plasmid DNA encoding bone morphogenetic protein 2 complexes successfully transfected tissue cells and induced the human bone morphogenetic protein 2 expression in a rat. The modification of the poly(ethyleneimine)/DNA complexes with nuclear location signal peptide was effective in enhancing gene transfection of complexes in vitro and in vivo, thus indicating potential applications for bioactive scaffolds with enhanced tissue regeneration performance.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3