Effects of mechanical stimulation in osteogenic differentiation of bone marrow-derived mesenchymal stem cells on aligned nanofibrous scaffolds

Author:

Ngiam Michelle1,Liao Susan2,Ong Jun Jie Timothy3,Xiaodi Sui 3,Yixiang Dong 4,Ramakrishna S.5,Chan Casey K3

Affiliation:

1. National University of Singapore (NUS) Graduate School (NGS) for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), 05-01, 28 Medical Drive, Singapore 117456, Singapore

2. School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore,

3. National University of Singapore, Singapore 117576, Singapore

4. Department of Materials, Imperial College London, London SW7 2AZ, England, UK

5. National University of Singapore, Singapore 117576, Singapore, King Saud University, P.O. Box 2425, Riyadh 11451, Saudi Arabia, Institute of Materials Research and Engineering, 3, Research Link, Singapore 117602, Singapore

Abstract

Mechanical stimulation is one of the factors that regulating bone regeneration and healing. In this study, the biological responses of bone marrow derived mesenchymal stem cells (MSCs) to mechanical stimuli on aligned nanofibers and cast films were investigated. The uniaxial cyclic strain (1% strain and 1 Hz) was applied continuously to the cell substrates and osteoblastic activities were assessed at weeks 1, 2, and 4. The MSCs morphology on the aligned nanofibers was more elongated and spindle-like than MSCs on the cast films. Strain stimulation significantly attenuated the proliferation at week one but was significantly enhanced at week 4 for both types of substrates. Only the MSCs on strained nanofibers had greater alkaline phosphatase (ALP) levels at week one, while the ALP hindered the MSCs on both substrates at week 4. Strain application played a greater influence on osteocalcin expression for the cast films than the nanofibers at week 4. Clearly, the cellular response to strain induction was highly dependent on the surface—cell adhesion, which itself was greatly influenced by the surface texture of the substrate.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3